
EE 552 High Level Digital ASIC Design Using CAD

Where's Waldo Image Finder

Final Report

Instructor: Dr. Elliott

By:
James Walton (james3412@hotmail.com)

Jacob Slobodov (slobodov@ee.ualberta.ca)
Han-Jen Yang (hanjen@ualberta.ca)

David Pittis (pittis@freenet.edmonton.ab.ca)

November 27, 2001

1

Declaration of Original Content

The design elements of this project are entirely the original work of the authors and have not

been submitted for credit in any other course except as follows:

1. USB architectural control ideas from reference [3];

2. DPLL state diagram from [7];

3. USB test bench (modified) from [3]

__________ ___________ ____________ ____________
David Pittis Jacob Slobodov James Walton Han-Jen Yang

Abstract

This document describes the design, implementation, and verification of EE552 “Where is
Waldo” project. The project is to construct image recognition device built on an Altera Flex10k FPGA
which is mounted on an Alerta UP1 broad. The image recognition device utilizes the external input and
output devices and the self-developed image recognition algorithm is configured into FPGA. The
image recognition device will take the target and candidate images from the Logitech Quickcam
Express camera and transform the image from 16-bit colour into 3-bit colour. Then the image will
stored into external SRAM and being processed by the recognition algorithm. After the image
searching is done, the result will be output onto the Monitor for found image and LED for percentage
match.

2

Table of Contents:

Achievements … .. 3

Description of Operation … … … … … … … … … … … … … … … … ..4

Implementation
USB data receiver … … … … … … … … … … … … … .… … … 6

- Physical interface … … … … … … … … … … … … 7
- Digital Phase locked loop … … … … … … … … ..8
- NRZI decoding … … … … … … … … … … … … .9
- Packet disassembler … … … … … … … … .… … ...10

Data filter … … … … … … … … … … … … … … … … … … … .10
Image recognition … … … … … … … … … … … … … … … … .11

- General description of algorithm … … … … … … .11
- Pixel address … … … … … … … … … … .… … … ..13
- Pixel recognition … … … … … … … … … .… … … 14
- Percent … … … … … … … … … … … … … … … … 15
- LED output … … … … … … … … … … … … … … .15
- Memory module … … … … … … … … … … … … ..16

VGA interface … … … … … … … … … … … … … … … … … ..17
- introduction … … … … … … … … … … … … … … .17
- interface capability … … … … … … … … … … … .17
- design … … … … … … … … … … … … … … … … .18
- testing … … … … … … … … … … … … … … … … ..18

Data Sheet
Features … ..19
I/O pin requirements … … … … … … … … … … … … … … … .19
Estimation of required FPGA logic cells … … … … … … … . 20

Design Hierarchy … … … … … … … … … … … … … … … … … … … ..21

Index to VHDL code … … … … … … … … … … … … … … … … … … 22

Test Bench Index … … … … … … … … … … … … … … … … … .… … .23

Index of Test Cases and Simulations … … … … … … … … … … … … 24

References … 26

Appendix A (VHDL code)
Appendix B (Simulations)
Appendix C (data-sheets of used Ics)

3

Achievements

Originally, this project was supposed to be an image recognition system working in real time.
However, due to significant obstacles such as proprietary (and unavailable) information about the
transfer protocols for our USB camera, we were forced to abandon the real time approach. Instead of
using real time processing, we did an offline technique.

Also, our original goal was to use some addressing tricks to simulate a zoom in and out, as well
as rotation so that we can gain a more robust image recognition algorithm. This was abandoned due to
lack of space on FPGA and amount of processing time it would take.

We had originally planned to use black and white images only (one bit per pixel) in our image
recognition. We have increased this to Bayer RGB colour (two bits per pixel). This improvement
should refine our ability to recognize the target image.

Also we originally planed to implement a complete USB host controller, but instead a USB
receiver was designed. Using a wire tapping, we managed to extract required video information from
USB cable. This part of the project was successfully implemented and tested in hardware.

Functional modules:
1. The USB receiver – worked in hardware;
2. Data filter – worked in hardware;
3. Image recognition – worked in simulation;
4. VGA output – functionality partially tested in hardware (displayed static images, did not

try to output image stream yet).

4

Description of operation

Where’s Waldo? The “Where’s Waldo?” project uses a USB camera to gather image data and
store it into memory. “Where’s Waldo?” then takes data out of memory and performs a recognition
algorithm on it.

The user operates the device by pushing one of two buttons. There is a “Capture Target” button, and a
“Capture Candidate” button. When the Capture Target button is pushed, the system is reset and the
device captures a 48 pixel by 48-pixel target image. After this is complete, the system will wait for the
user to push another button. If the user pushes the Capture Target button again, another target will be
captured. If the user pushes the Capture Candidate button, a 240 by 240 image will be captured. The
system will then perform its image recognition algorithm and try to find the Target Image somewhere
in the Candidate Image. The system keeps track of the best match. When the image recognition
algorithm is complete, the system outputs the percentage of the best match to the LEDs on the board,
and the entire 240 by 240 Candidate Image is displayed to a VGA screen, and shows a crosshairs where
the best match is. The top-level hierarchy diagram is shown below in Fig. 1.

Fig1.”Where’s Waldo” image finder. Top-level block diagram.

The USB camera is plugged into a laptop computer, where an image capturing program is running.
Since the laptop is sending the appropriate signals to the USB camera, the camera is sending image
data back to the laptop. The USB receiver, shown in Fig. 1, listens to the signals sent from the camera
via a wiretap. The USB receiver interprets this data and sends it to the Filter shown in Fig. 1. The data
comes into the USB receiver as packets of image data as well as other extraneous information, which is

% of the best
 match

Handshaking

Control signals

Handshaking

Handshaking

USB receiver

(wire-taped to USB
cable)

Camera

Data filter
 (transforms 16-bit
color format to 3-
bit)

Image
recognition
(finds best
candidate image to

SRAM
(external)

VGAMonitor

LED

5

normally handled by software on the computer. Since we only want the raw image data for the project,
the USB receiver has to select the appropriate packets to send to the Filter.

The data received by the Filter is in a particular format, which is described in detail in the Filter design
section, later in the report. The Filter converts this raw data into a format that is understood by the
Image Recognition algorithm, and stores it into the SRAM. The data is now ready for the Image
Recognition part, and control is passed to that module.

The Image Recognition algorithm takes the data out of data one pixel at a time and performs a
comparison. These comparisons are made between every pixel in the target image and the potential
match from the candidate image, and constitute one frame. After each frame is complete, the
percentage of match is calculated and compared with the best percentage from the previous frames.
The Image Recognition algorithm also keeps the location of the centre of the frame that had the highest
percentage of match. After all the frames have been analyzed, the best percentage and corresponding
centre location will be sent to the output. The percentage is displayed directly on the LEDs on the
board, and the centre location coordinates are sent to the VGA output stage. Control is passed to the
VGA output module.

The VGA output module takes the candidate image data from the SRAM and displays it on the screen.
The VGA output module also displays a crosshairs on the frame, which most closely matches the target
image.

6

Implementation

USB data receiver (extractor)

Since the current project utilizes a USB video camera, it is necessary to design a device that is
able to receive (extract) and decode video data from USB communication line. For that purpose the
USB data receiver was designed. Tapping the USB cable, which goes from camera to PC’s USB port,
does the physical connection. The designed USB receiver does not send any signals to the USB cable,
it just “listens” to the communication between camera and PC, analyzes USB packets and extracts only
video data, ignoring everything else. The block diagram of the USB data receiver is presented on Fig2.

Physical
interface

NRZI decoder

DPLL

Packet
disassembler

PDIUSBP11A
(external)

Data out

USB receiver

Fig 2. USB data receiver. Top-level block diagram

The top level module has entity USB which composed from 4 functional blocks: physical
interface (PHY), digital phase locked loop (DPLL), NRZI decoder and bit-unstuffer, packet
disassembler. Their entities are pdiusb, dpll, nrzi_decode and pd respectively. Fig3 represents entity of
the USB data receiver.

Fig 3. USB data receiver. Entity block diagram.

The entity has four inputs and outputs. External crystal oscillator supplies 48MHz-clock frequency
(clk_48). Signals rcv, vp, vm and oe are connected to the external IC (USB transceiver). Output signal
data_out is 8-bit wide buss outputs extracted video data, data_out_valid (handshaking) indicates that
output data is valid and can be latched-in by the next functional unit. Output data_out_done is used to
signal last data in a packet been received. The extracted from USB cable data is sent out from receiver
in 8-bit (byte) wide chunks with distance of 8 clock cycles of clk_dpll (12MHz).

7

The top-level functional block (USB) also has POR (power-on reset) module, used to preset all
signals and registers to required initial values. It forces po_rst signal to be high for one clock cycle
shortly (3 clock cycles) after FPGA is configured.

The following parts of this chapter describe each functional module in details.

? Physical interface (entity: pdiusb)

According to [1] USB employs a differential driver to drive the USB data signal onto the USB
cable, as well as to receive data signal from USB cable. For that purpose the USB transceiver
PDIUSBP11A is used. This IC converts differential signal levels (D+, D-) into CMOS levels. Fig4
shows a corresponding circuit diagram for the USB transceiver part.

Fig 4. USB transceiver schematic diagram (modified from [3])

The entity pdiusb works as glue logic between the USB transceiver chip and rest of the
functional units. It is responsible EOP (end of packet) recognition, SE0 (single ended zero), host
initiated reset and USB line error detection. The corresponding entity diagram of physical interface
module is shown on Fig5.

Fig 5. Physical interface. Entity block diagram.

 As stated in [1], the EOP is initiated by pulling differential lines to sate SE0 (D+ and D- lines are both
low) for two bit times (~160ns) followed by J state for one bit time. These are detected by physical
interface. It check time for with SE0 was applied ad if was long enough that device generates EOP
signal.

Host initiated reset on USB line is done by driving an extended SE0 at the port. If device sees
an SE0 on its upstream port for more then 2.5us it may treat that signal as a reset. The reset sensor is
implemented by using counter and flip-flop. Once SE0 is detected counter starts counting and when
host drives SE0 up to 120 cycles of clk_48 the usb_rst signal is forced to be high for one clock cycle.

8

? Digital Phase Locked Loop (entity: DPLL)

The 12Mhz clock in the host and the USB device are asynchronous since they are derived from
different oscillators. Thus, bitwise synchronization is needed, which can be achieved with the help of
PLL. According to the [7], a typical implementation would use a DPLL with 4x oversampling to derive
the received clock. A typical DPLL state machine, proposed in [7] is shown in Fig. 6 and runs on the
48Mhz clock. In this diagram ‘a’ and ‘b’ are the differential receiver (PDIUSBP11A) output,
synchronized by a stage (latches) of the 48Mhz. Also, ‘a’ is latched on the rising edge and ‘b’ is latched
on the falling edge. In this state machine, states C and D are used to lock to the incoming bitstream
using the initial transitions. After lock is achieved, the DPLL circulates in either the right half of
diagram (when incoming data is ‘1’) or in the left half (when incoming data is ‘0’). The nominal loop is
trough the four states in vertical line (5-7-6-4 or 1-3-2-0). In this loop, the inner two states (7-6 or 3-2)
generate the clock high period and the outer states (4-5 or 0-1) generate the clock low period of the
extracted 12Mhz clock. These four states are chosen to ensure adequate setup and hold time for
clocking the incoming data. Transitions in the bitstream result in switching between the loops. If there
is no change in bit width, the transition will be from states 0 and 4. If the bit width is shorter (host is
running at ht e higher frequency), the transition will be from states 2 and 6 (so the low period of the
derived clock is shortened by one period of 48Mhz). In case of a long bit width, the loop transition will
go from states 3 and 7, through states F and B, adding an extra 48Mhz high period to the derived clock.

DC

5

7

6

4

1

3

2

0

b=0 b=1

a=1

b=1

B F
b=1

b=1

a=0

b=0

b=0

b=0

 RST
b=1

Fig 6. Block diagram of DPLL state machine implementation

The VHDL code implementation of the described DPLL is presented on Fig3 in Appendix A.
The first two processes are use to synchronize (latch-in) the incoming data with 48Mhz clock. The third
process is DPLL state machine implementation. Fig7 presents entity diagram of DPLL.

9

Fig 7. Digital phase locked loop. Entity block diagram.

The guaranteed DPLL clock lock during USB data transmission is ensured by employing a bit
stuffing. Also, each packet has Sync pattern prefix (seven consecutive ‘0’, represented as 7 level
transitions in NRZI format) used for synchronization (for more details see NRZI decoding/bit
unstuffing section).

? NRZI decoding/ Bit unstuffing (entity: NRZI_decode)

The USB employs NRZI (Non Return to Zero Invert) when transmitting data. In NRZI ‘1’ is
represented by no change in level and ‘0’ is represented by a change in level. A string of zeros causes
the NRZI data toggle each bit time, while a string of ones causes long period with no transition in the
data. Thus, after data was received it has to be decoded (converted from NRZI to the regular bit
stream). Also, in order to ensure adequate signal transitions, bit stuffing is employed. A zero is inserted
after six consecutive ones in the data stream before the data is NRZI encoded, which forces a transition
in NRZI data stream. This gives a receiver (DPLL) a data transition at least once every seven bit times
to guarantee the clock lock. The receiver decodes the NRZI data, recognizes the stuffed bits and
ignores them. If receiver gets seven consecutive ones anywhere in the packet, it means that bit-stuffing
error has occurred and the packet should be ignored. Figure 8 shows entity diagram of NRZI decoder.

Fig 8. NRZI decoder. Entity block diagram.

The VHDL implementation of NRZI decoder is presented on Fig4 in Appendix A.
As was mentioned before, beginning of each packet has “sync” pattern (seven ‘0’ followed by ‘1’),
used to synchronize internal clock with incoming data-stream. This “sync” pattern does not carry any
meaningful information and has to be ignored by NRZI decoder. After SOP was detected (by pdiusb),
the first SM (process: sync_rem) senses sync pattern and forces sync_end signal to ‘1’. At that time
DPLL has to be locked already and it is used to latch-in incoming data. NRZI decoding is done by
comparing current data bit on the input line with previously latched one. If they are the same then
decoder outputs ‘1’ if not then ‘0’. As declared in [1], the last ‘1’ of the “sync” pattern has to be count
as a first ‘1’ in bit stuffing sequence, but should not be shifted to the output. Thus, two enable signals
(shift_en and stuff_count_en) are used to enable bit-unstaffing and shifting incoming data into output
register. There is also rx_active signal that indicates that data can be received and that it is valid data
(no errors occur). In case of bit-stuffing error (7 consecutive ‘1’) rx_active forced to be low until EOP
is received, which prevents corrupted packets from further processing. Once incoming data been
converted from NRZI format, it has to be deserialized. Deserialization is done by using 8-bit shift
register, controlled by shift_en signal. If six consecutive ‘1’s were received shift_en goes low, disabling

10

shift register, and thus ignoring stuffed bit. After 8 bits of incoming data are in the output shift register,
the data_rx_out_valid goes high indicating that data at the output is valid. A 3-bit counter (variable
count) is used to count number of shifted bits and after all 8 bits are shifted it forces data_rx_out_valid
to be ‘1’ for one clock cycle, which is enough to let next module shift-in the output data.

? Packet disassembler (entity: pd)

In USB all data travels trough physical wires in a packet format. Each packet has its 8-bit wide
ID part (PID). Some packets, such as handshake packet, don’t have any other field accept PID. In order
to extract required information from the data stream, each packet has to be received and analyzed.
Since we are only interested in image data from camera, thus data only from data packets should be
extracted. The designed packet disassembler, which entity block diagram is presented on Fig9,
performs such functions.

Fig9. Packet disassembler. Entity block diagram.

After incoming data been translated in NRZI decoder, it goes directly to PD. At the beginning each
packet has its PID. The actual packet type is coded by four LSBs. The MSB part is LSB’s bitwise
complement, used for PID error checking. We are interested only in data packets, which have PID
“0011” for even and “1011” for odd data packets (the data PID toggling is used for additional
synchronization). Thus, only data packets will be filtered and sent out. The core of PD is a control state
machine that has three states. If in idle state SM sees that input data is valid (data_rx_in_valid=’1’)
and system in RX active mode, it lathes input data in and goes to active state. Here it checks what type
of packet was received and if its data packet then it goes to state data, otherwise SM goes back to idle
in order to wait for the next packet. In data state all input data is conveying directly to the output. If
end of packet was detected (rx_active goes low in this case), then SM returns back to idle.

Each received PID is checked for errors by comparing its MSB and LSB. If error is detected
then current packet will be ignored. This error checking helps to prevent USB receiver from getting
false (when other packets due to an error become a data packet) data packets.

Data Filter

The filter transforms data from the data stream out of the camera to the unique format used by
the image recognition algorithm and stores it to memory.

The data stream, as listed in [10], from the camera consists of image header sequences, chunk
size sequences and image data in the bayer RGB format. The image header is a VSYNC patter (80 02
00 00 80 01 00 00) , the chunk size is 02 00 HH LL where HH LL is the number of bytes of image
data that follow. The image data is in a two byte per pixel format: green then red for even rows and
blue then green for odd rows. The image is set by the attached computer to be 320 by 240 pixels.

11

The VSYNC and chunk header portions of the data stream are used by the process
image_data_out (Fig. 8 in Appendix A) in the filter portion of the VHDL code. This process reads in
all image related data from the usb interface and writes out only the color data, a valid flag and
indications of a new image starting.

The data format used by the image recognition algorithm is a unique format using one byte for
two pixels. The byte is divided into two with the upper four bits representing the first pixel and the
lower four the second pixel. Within each half of the byte the most significant bit is the binary
representation of the first color followed by the second color. The binary representation of the colors is
obtained by thresholding the color byte at 0x80 and setting a 1 for greater than and 0 for less than. The
third bit indicates if the pixel is on an odd or even line which affects which colors the preceding two
bits represent. Finally the fourth bit is meaningless since two colors were stored in one bit for ease of
implementation. This byte format is illustrated in Fig 10.

Color 1
pixel 1

Color 2
pixel 1

Odd /
Even

Don’t
Care

Color 1
pixel 2

Color 2
pixel 2

Odd /
Even

Don’t
Care

Fig. 10: Image recognition byte format

Data transformation is handled by the transform process (Fig. 8 in Appendix A). Using the size
of each image, the threshold values for the colors and the outputs of the previous process, the data is
transformed from the bayer RGB pattern to the one described above.

The process memory_set (Fig. 8 in Appendix A) waits until the new byte has been completely
formed and then sets a flag indicting the byte is ready to be written to memory and sets the value to be
written (to_memory) to the byte value.

Finally, the process memory_write (Fig. 8 in Appendix A) actually stores the image in memory.
It uses flags set by the image recognition state machine to determine if the image being stored is the
target image or a candidate image. Accordingly it stores the image in the appropriate place in memory
discussed in the image recognition section. The filter entity is diagrammed in Fig. 11.

Fig 11. Filter Entity Description

Image Recognition

? General Description of Algorithm:

The image recognition portion of the project will take the target image stored in memory and
compare it with frames of the same size from the candidate image. The target image is 48 by 48 pixels,

get_target Rst_int
get_candidate clk_pll
get_target_done data_in
get_candidate_done data_in_valid

to_memory
address
write_enable
output_enable

8

8
15

12

and the candidate image will be 240 by 240 pixels, where each pixel is represented by two bits. The
camera selected for the project uses the Bayes RGB method of colour compression so only two colours,
either red and green, or blue and green are preserved for each pixel.

The image recognition system works by systematically and exhaustively comparing each
possible candidate image with the target image. I.e. the 240 by 240 stored image has a total of

36864)48240(*)48240(??? possible 48 by 48 candidate images in it. This is shown graphically in
fig. 12.

Fig 12. Image recognition.

The possible matches are represented by the dashed squares. The actual comparisons are done on a
pixel by pixel level, and we have devised a kind of “fuzzy” matching algorithm. A complete match
between two pixels of the same type is a +1, a partial match between two pixels of the same type is a
+0, and a mismatch is a –1. These +1’s , +0’s and –1’s are accumulated and the result can be
interpreted as a percentage of a complete match. I.e. a complete match will have accumulated

230448*48 ? +1’s (one for each pixel in the target image). The general formula then, to calculate the
percentage of the match between the target and candidate image is:

2304
100*counterpercent ?

However, since it is inconvenient to represent negative numbers, we shifted the values so that a total
match will add 2 to the counter, a partial match will add 1 to the counter, and a mismatch will add 0 to
the counter. We also adjusted the denominator so that it is a factor of 2 to aid in computational
efficiency. The new formula is:

? ? ? ?
122

89*
4096

89*
4608
100* countercountercounterpercent ???

This percentage is then represented on the LED outputs on the board and will show the percentage of
match between the target image and the best candidate image in the 240 by 240 field of possible
candidate images.

The ASIC performs this algorithm using four components. These components are: Image
Address, Pixel Recognition, Percent, and LED Output. The hierarchy diagram is shown below in Fig.
13.

Target Image 48 by 48

Candidate Image 240 by 240

… ..

… ..

13

Fig 13. Image recognition module. Top-level diagram.

The data flows through the modules following the heavy arrows. The double ended arrows represent
the handshaking between the modules.

? Pixel Address:

The Pixel Address module works out the coordinates of the pixels to be compared on the target
image and fetches the data from the memory. Then, the Pixel Address module does the same thing for
the candidate image pixel. Once both pixels have been fetched from memory, they are held in the Pixel
Address’s buffer until the Pixel Recognition module requests them. The pixels are sent simultaneously
by the Pixel Address module to the Pixel Recognition module. The Pixel Address module is shown
below in Fig. 14.

Pixel Address

Pixel
Recognition

Percent

LED Output

From RAM

To LEDs

Image Recognition
Module

14

Figure 14. Pixel Address block diagram

? Pixel Recognition:

The Pixel Recognition module checks to see if the pixels are a complete match, partial match, or a
mismatch. This information is buffered until the Percent module requests it. Once the Percent module
requests the match status information, the Pixel Recognition module requests another pixel from the
Pixel Address module. The Pixel Recognition module is shown below in Fig. 15.

Fig 15. Pixel Recognition module block diagram

Pixel Recognition

next_match_req

target_pixel

candidate_pixel

next_bit_ready

clk

next_bit_ready

next_bit_reques
t

2

2 match_status

2

Pixel Address

next_bit_request

target_pixel

candidate_pixel

next_bit_ready

clk reset

pixel_data

address

output_enable

write_enable

percentage_done
frame_complete

2
2

15

8

memory_ready

image_done

88
best_match_y

best_match_x
best_address

Done_LED

15

? Percent:

The Percent module receives the match status information from the Pixel Recognition module and
accumulates it with the previous data. The Percent module also checks to see whether a complete
frame has been analyzed. If it has, the Percent module tells the Pixel Address module to wait while it
calculates the percentage of the match. After this has been completed, the Percent module checks to
see if the latest percent is higher than the best percent so far. If it is, the new best percent is updated
and sent to the LED Output module. When a new best percent is saved, the save_output signal is sent
to the Address module so that the location of the best match can be saved. When this is done, the
Percent module tells the Pixel Address module to start going again. If a frame is not complete, then
the Percent module simply accumulates the numbers for future calculation. The Percent module is
shown below in Fig. 16.

Fig 16. Percent module block diagram

? LED Output:

Once the frame is complete and the percentage has been sent to the LED Output module, the LED
Output module decodes the 7 bit binary number and sends it to the LED pins on the board. The LED
Output module is shown below in Fig 17.

Percent
percent

clk reset

next_match_ready

match_status

next_match_request

percentage_done frame_complete

7
2

save_output

16

Fig 17. LED Output module block diagram

Memory module

To make sense of the data stored into the memory, we have constructed a memory map showing
the location of the target and candidate images in the SRAM. We used a 32k by 8 SRAM module. This
RAM chip has 15 address pins (a0 to a14) pointing to 768,32215 ? unique memory locations. Each
memory location stores 8 bits, or one byte. Since the camera selected for the project uses the Bayes
RGB method of colour compression (i.e. only two colours, either red and green, or blue and green are
preserved for each pixel), we have chosen to store the pixels in memory with two pixels per byte. The
Pixel Type Indicator distinguishes between the two types of pixel. Two bits in each byte are unused.

We organized the bytes of memory into a grid of 128 by 256. Address pins a0 through a6 give
the x-coordinate of the map, and address pins a7 to a14 give the y-coordinate. This map is shown
below in Fig 18.

Fig 18. Memory Map.

LED Output
ones

7

percent

7

tens

7

Candidate Image

Target Image

a7 to a14

a0 to a6

Target Image

0 119
0

239
240 47 48 950

255

240 255

47

0

95

0

240 247

a0 to a6

a7 to a14

17

The candidate image is straightforward. There are 120 horizontal addresses which are addressed by a0
to a6. Since each byte contains two pixels, this makes 240 horizontal pixels for the candidate image.
There are also 240 vertical addresses which are addressed by a7 to a14 that make up the 240 vertical
pixels.

The target image is more complex. Since there wasn’t room on the chip to store the 48 by 48
image in a single easy-to-understand square shape, it had to be divided into two sections. The map for
the memory locations, as it would be seen if all of the pixels were aligned properly, is shown on the
right in Fig 18.

The equations to transform the (x,y) coordinates on the candidate image are given below.

a0 to a6 address =
2

coordinatex ?

The remainder is truncated, but preserved. The remainder will be used to determine which pixel in the
byte is being addressed.

a7 to a14 address = coordinatey ?

The equations to transform the (x,y) coordinates on the target image are give below.

a0 to a6 address = coordinatey ? if 32?? coordinatex

a0 to a6 address = 48?? coordinatey if 31?? coordinatex

a7 to a14 address =
2

240
coordinatex ?? if 32?? coordinatex

a7 to a14 address =
2

32
240

??? coordinatex
 if 31?? coordinatex

The remainder is preserved to determine the location of the pixel within the byte.

VGA interface

? Introduction

The VGA interface of the project is a standard 3-bit 8-color display with 640 by 480 resolution.
The major part of VGA interface code is taken from past student application notes. The direct reference
to the application notes can be found in the reference section in the report.

? Interface capability

The modification that we made is to accommodate the memory data layout in our design and
output the target, candidate, and found cursor accordingly. Because of the simplified processing data,
the VGA is designed to be output 8-color which is the maximum color depth that will be stored in the

18

memory. Also, due to the usage of Bayer RGB pattern in optical sensor of Logitech Quickcam Express,
the color violent (RGB = “101”) will never show up anywhere in the memory. This will make the
violent color as an excellent choice of the found cursor color.

? Design

The VGA interface contains three parts: vga.vhd, count_xy.vhd, and syncgen.vhd. The files
count_xy.vhd and syncgen.vhd are taken from the past student application notes and they are
unmodified. The vga.vhd is the top level control over the count_cy.vhd and syncgen.vhd with built-in
output component. The output component is taking the pixel color information stored in the memory
and output it accordingly. The actual address map can be referred to the memory data lay-out diagram
in the image recognition part. The count_xy.vhd is to count the pixel position and syncgen.vhd is to
generate the vertical synchronous and horizontal synchronous signals for 680 by 480 resolution. Both
files has retain the same functionality like the original code except the new added reset function.

The vga.vhd will selectively check the value of the current pixel position counter, and it will
only output the signal if the pixel position are valid. The vga.vhd will also check the pixel position with
the center position of the matched image. It will also check the image match type which can tell us the
type of the match (normal size match, zoom in match, zoom out match, and tilt match). By knowing the
center position of the match image, vga.vhd will calculate the corresponding crosshair pixel position
and override those output value to be violent color.

? Testing

The basic VGA output functionality is tested and has no known bug existed. The VGA output
can be configured into whatever format we want by specifying the individual pixel location. The
grabbing correct pixel data from the memory is not tested to this date due the time constraint and other
codes in the project.

19

Data Sheet

Features:

? Receives data (video stream) from USB cable using wire tapping.
Image data filtering and compression on streaming input data. Due to limitations of space on the
FPGA and in memory, 16 bit colour (8 bits per colour) was transformed into 2 bits (one bit per colour)
Images storage using 32k by 8 bit SRAM memory
? All possible candidate frames compared to the target image to find the closest match. The
percentage of this closest match is displayed on the FPGA LED bank, and the location of the closest
match frame is shown on the VGA output.
? The same target image can be used for multiple candidate images.
? VGA output of the complete 240 by 240 pixel candidate image plus a crosshairs locating the best
match frame within the candidate image

I/O pin requirements

FPGA’s I/O pins:

Signal name Type # of pins Description
USB receiver

rcv In 1 Datain input from PDIUSBP11A to FPGA
vm In 1 USB differential signal (CMOS level) input

from PDIUSBP11A to FPGA
vp In 1 USB differential signal (CMOS level) input

from PDIUSBP11A to FPGA
oe Out 1 PDIUSBP11A operational mode.

address Out 15 SRAM address bus
to_memory Out 8 SRAM data bus

write_enable Out 1 Write anable (WE) signal for SRAM chip
output_enable Out 1 Output (read) enable signal for SRAM
push_button1 In 1 On board pushbutton (captures candidate

image)
push_button2 In 1 On board pushbutton (captures target image)

vga_red Out 1 Red signal to VGA monitor
vga_green Out 1 Green signal to VGA monitor
vga_blue Out 1 Blue signal to VGA monitor

vga_h_sync Out 1 Horizontal sync signal to VGA monitor
vga_v_sync Out 1 Vertical sync signal to VGA monitor

tens Out 7 Ten’s part of match percentage. On board
LED

ones Out 7 One’s part of match percentage. On board
LED

20

Estimation of required FPGA Logic Cells

Entity # of LCs
pdiusb 101

dpll 20
nrzi_decode 42

USB

pd 32
Total USB: 195

Data filter 484

Pixel_state 11
Percentage 152Image_recognition
Ledoutput 64

image 317

Total Image_recognition 544
VGA 366

Total: 1589

21

Design Hierarchy

controller

usb

pdiusb

dpll

nrzi_decode

pd

filter

image
_recognition

vga

image

pixel state

percentage

led_output

22

Index to VHDL code (see Appendix A)

USB receiver
usb: top-level entity of USB receiver (encapsulates all other parts) . Extracts

video data from USB cable.

- implemented in hardware and tested, no known bugs;

pdiusb: physical interface. Detects EOP and forced reset conditions.

- implemented, no known bugs;

nrzi_decode: NRZI decoding/ bit-unstaffing.

- implemented, no known bugs;

dpll: Digital phase locked loop. Extracts clock from incoming data.

- implemented, no known bugs;

pd: Packet disassembler. Analyze packets and filters out data.

- implemented, no known bugs;

Data filter

filter: Transforms 16-bit color format to 3-bit (8 colors).

- simulated and partially implemented, no known bugs;

Image recognition

image_recognition: top-level entity of image recognition unit

- simulated, no known bugs;

image: works out coordinates of pixels to be compared

- simulated, no known bugs;

pixel_state: compares images

- simulated, no known bugs;

percentage: calculates percent of matches

- simulated, no known bugs;

ledout: outputs number of matches

23

- simulated, no known bugs;

VGA controller

vga : top-level entity of VGA controller;

- compiled and tested in hardware, no known bugs;

syncgen: H and V sync signal generator;

- compiled and tested in hardware, no known bugs;

count_xy: pixel position counter;

- compiled and tested in hardware, no known bugs;

Test bench index.

USB receiver test bench

usb_test: Top-level entity of USB receiver test bench. Used to simulate behavior
 of USB receiver. It includes test bench package and UUT.

usb_test_pack: Test bench package file. Comprises all components (procedures),
required to generate appropriate USB signals.

24

Index of test cases and simulations

For detailed description of test cases and simulation waveforms see Appendix B.

Functional module
(entity)

Waveform figure #
(Appendix B)

Test cases

Fig1 Verified if physical interface can
detect EOP (end of packet)

pdiusb

Fig2 Verified forced (by host) reset
detection.

dpll Fig3 Tests correct functionality of
Digital Phase Locked Loop

(clock recovery)
Fig4 Verified “sync” pattern detection
Fig5 Verified correctness of data

recovering from NRZI format
Fig6 Verified correct functionality of

bit-unstuffing mechanism.

nrzi_decode

Fig7 Verification of bit stuffing error
detection

Fig8 Checks whether PD can detect
“data” packets and ignore “non-

data” packets

pd

Fig9 Verified whether PD can detect
corrupted PID and then ignore the

whole packet
usb Fig10 Top-level USB entity simulation,

using test bench.
Verified full functionality of USB

receiver.

filter Fig 11

Fig 12

Fig 13

Verified ability to write multiple
lines of pixels and verified writes

to memory and appropriate
memory mapping.

Verified ability to write longer
lines of pixels

Verified ability to detect new
VSYNC patterns in data

25

image Fig 14

Fig 15

Verify correct addresses assigned
during beginning of frame

Verify correct addresses assigned
during end of frame / beginning of

new frame

pixel state Fig 16 Verify that the correct match
status signals are being sent

percentage Fig 17 Verify that the percentage counter
is working correctly

LED_output Fig 18 Verify that the LED_output is
sending the correct signals to the

ones and tens LEDs

image_recognition Fig 19

Fig 20

Verify that the entire algorithm
works at the beginning of a frame

Verify that the entire algorithm
works at the end of a frame

26

References

1. USB 1.1 Specification documents: http://www.usb.org/developers/docs.html
2. Logitech website: http://developer.logitech.com/
3. Full-Speed USB 1.1 Function Controller: http://www.trenz-electronic.de
4. Source code for Logitech QuickCam Express driver on Linux OS system: http://qce-

ga.sourceforge.net/
5. EE552 student application notes: http://www.ee.ualberta.ca/~elliott/ee552/

studentAppNotes/2001_w/misc/Apps_Links.html
6. Image processing concept: http://www.sciam.com/0697issue/0697villabox4.html
7. Design a robust USB serial interface engine (SIE):

http://www.usb.org/developers/whitpapr.html
8. Cyclic redundancy check in USB: http://www.usb.org/developers/whitpapr.html
9. Logitech Quickcam data format: http://wwwbode.cs.tum.edu/~acher/quickcam/quickcam.html
10: Camera data stream format from Georg Acher's Homepage

http://wwwbode.cs.tum.edu/~acher/quickcam/quickcam.html

